几大排序算法,稍加整理一下

常见的八大排序算法,他们之间关系如下:

1.插入排序之直接插入排序(默认从小到大)

  • 直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过。
  • 直接插入排序可以用两个循环完成:
    第一层循环:遍历待比较的所有数组元素
    第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较。
  • 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
#直接插入排序
def insert_sort(L):
#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始
for x in range(1,len(L)):
#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换
#range(x-1,-1,-1):从x-1倒序循环到0
for i in range(x-1,-1,-1):
#判断:如果符合条件则交换
if L[i] > L[i+1]:
temp = L[i+1]
L[i+1] = L[i]
L[i] = temp

2.插入排序之希尔排序

  • 希尔排序的算法思想:将待排序数组按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序。
  • 希尔排序的总体实现应该由三个循环完成:
    第一层循环:将gap依次折半,对序列进行分组,直到gap=1
    第二、三层循环:对每组进行直接插入排序
  • 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#希尔排序
def insert_shell(L):
#初始化gap值,此处利用序列长度的一般为其赋值
gap = (int)(len(L)/2)
#第一层循环:依次改变gap值对列表进行分组
while (gap >= 1):
#下面:利用直接插入排序的思想对分组数据进行排序
#range(gap,len(L)):从gap开始
for x in range(gap,len(L)):
#range(x-gap,-1,-gap):从x-gap开始与选定元素开始倒序比较,每个比较元素之间间隔gap
for i in range(x-gap,-1,-gap):
#如果该组当中两个元素满足交换条件,则进行交换
if L[i] > L[i+gap]:
temp = L[i+gap]
L[i+gap] = L[i]
L[i] =temp
#while循环条件折半
gap = (int)(gap/2)

3.选择排序之简单选择排序

  • 简单选择排序的基本思想:比较+交换。
    从待排序序列中,找到关键字最小的元素;
    如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
    从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。
    因此我们可以发现,简单选择排序也是通过两层循环实现。
    第一层循环:依次遍历序列当中的每一个元素
    第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。
  • 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 简单选择排序
def select_sort(L):
#依次遍历序列中的每一个元素
for x in range(0,len(L)):
#将当前位置的元素定义此轮循环当中的最小值
minimum = L[x]
#将该元素与剩下的元素依次比较寻找最小元素
for i in range(x+1,len(L)):
if L[i] < minimum:
temp = L[i];
L[i] = minimum;
minimum = temp
#将比较后得到的真正的最小值赋值给当前位置
L[x] = minimum

4.选择排序之堆排序

5.交换排序之冒泡排序

  • 冒泡排序思路比较简单:
    将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;
    ( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)
    对序列当中剩下的n-1个元素再次执行步骤1。
    对于长度为n的序列,一共需要执行n-1轮比较
    (利用while循环可以减少执行次数)
  • 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
#冒泡排序
def bubble_sort(L):
length = len(L)
#序列长度为length,需要执行length-1轮交换
for x in range(1,length):
#对于每一轮交换,都将序列当中的左右元素进行比较
#每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可
for i in range(0,length-x):
if L[i] > L[i+1]:
temp = L[i]
L[i] = L[i+1]
L[i+1] = temp

6.交换排序快速排序

  • 快速排序的基本思想:挖坑填数+分治法
    从序列当中选择一个基准数(pivot)
    在这里我们选择序列当中第一个数最为基准数
    将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧
    重复步骤1.2,直到所有子集当中只有一个元素为止。
    用伪代码描述如下:
    1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
    2.j–由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
    3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
    4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中
  • 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#快速排序
#L:待排序的序列;start排序的开始index,end序列末尾的index
#对于长度为length的序列:start = 0;end = length-1
def quick_sort(L,start,end):
if start < end:
i , j , pivot = start , end , L[start]
while i < j:
#从右开始向左寻找第一个小于pivot的值
while (i < j) and (L[j] >= pivot):
j = j-1
#将小于pivot的值移到左边
if (i < j):
L[i] = L[j]
i = i+1
#从左开始向右寻找第一个大于pivot的值
while (i < j) and (L[i] < pivot):
i = i+1
#将大于pivot的值移到右边
if (i < j):
L[j] = L[i]
j = j-1
#循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot
#pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可
#递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ end
L[i] = pivot
#左侧序列继续排序
quick_sort(L,start,i-1)
#右侧序列继续排序
quick_sort(L,i+1,end)

7.归并排序

  • 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。它的基本操作是:将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
    归并排序其实要做两件事:
    分解—-将序列每次折半拆分
    合并—-将划分后的序列段两两排序合并
    因此,归并排序实际上就是两个操作,拆分+合并
    如何合并?
    L[first…mid]为第一段,L[mid+1…last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first…last]并且也有序。
    首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
    重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
    此时将temp[]中的元素复制给L[],则得到的L[first…last]有序
    如何分解?
    在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列
    分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。

8.基数排序

  • 基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。
    分配:我们将L[i]中的元素取出,首先确定其个位上的数字,根据该数字分配到与之序号相同的桶中
    收集:当序列中所有的元素都分配到对应的桶中,再按照顺序依次将桶中的元素收集形成新的一个待排序列L[ ]
    对新形成的序列L[]重复执行分配和收集元素中的十位、百位…直到分配完该序列中的最高位,则排序结束
    根据上述“基数排序”的展示,我们可以清楚的看到整个实现的过程

9.总结

  • 各排序算法时间、空间复杂度以及稳定性

参考文章

简书:LeeLom
博客园:一像素
博客园:dreamcatcher-cx